Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 23(1): 498, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848813

RESUMO

BACKGROUND: Lentil is an essential cool-season food legume that offers several benefits in human nutrition and cropping systems. Drought stress is the major environmental constraint affecting lentil plants' growth and productivity by altering various morphological, physiological, and biochemical traits. Our previous research provided physiological and biochemical evidence showing the role of silicon (Si) in alleviating drought stress in lentil plants, while the molecular mechanisms are still unidentified. Understanding the molecular mechanisms of Si-mediated drought stress tolerance can provide fundamental information to enhance our knowledge of essential gene functions and pathways modulated by Si during drought stress in plants. Thus, the present study compared the transcriptomic characteristics of two lentil genotypes (drought tolerant-ILL6002; drought sensitive-ILL7537) under drought stress and investigated the gene expression in response to Si supplementation using high-throughput RNA sequencing. RESULTS: This study identified 7164 and 5576 differentially expressed genes (DEGs) from drought-stressed lentil genotypes (ILL 6002 and ILL 7537, respectively), with Si treatment. RNA sequencing results showed that Si supplementation could alter the expression of genes related to photosynthesis, osmoprotection, antioxidant systems and signal transduction in both genotypes under drought stress. Furthermore, these DEGs from both genotypes were found to be associated with the metabolism of carbohydrates, lipids and proteins. The identified DEGs were also linked to cell wall biosynthesis and vasculature development. Results suggested that Si modulated the dynamics of biosynthesis of alkaloids and flavonoids and their metabolism in drought-stressed lentil genotypes. Drought-recovery-related DEGs identified from both genotypes validated the role of Si as a drought stress alleviator. This study identified different possible defense-related responses mediated by Si in response to drought stress in lentil plants including cellular redox homeostasis by reactive oxygen species (ROS), cell wall reinforcement by the deposition of cellulose, lignin, xyloglucan, chitin and xylan, secondary metabolites production, osmotic adjustment and stomatal closure. CONCLUSION: Overall, the results suggested that a coordinated interplay between various metabolic pathways is required for Si to induce drought tolerance. This study identified potential genes and different defence mechanisms involved in Si-induced drought stress tolerance in lentil plants. Si supplementation altered various metabolic functions like photosynthesis, antioxidant defence system, osmotic balance, hormonal biosynthesis, signalling, amino acid biosynthesis and metabolism of carbohydrates and lipids under drought stress. These novel findings validated the role of Si in drought stress mitigation and have also provided an opportunity to enhance our understanding at the genomic level of Si's role in alleviating drought stress in plants.


Assuntos
Secas , Lens (Planta) , Humanos , Antioxidantes/metabolismo , Carboidratos , Lens (Planta)/genética , Lens (Planta)/metabolismo , Lipídeos , Análise de Sequência de RNA , Silício/toxicidade , Estresse Fisiológico/genética
2.
Physiol Plant ; 172(2): 1382-1398, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33887059

RESUMO

Lentil is the fifth most important grain legume growing in arid/semi-arid regions of the world. Drought is one of the major constraints leading up to 50% of production losses just in lentil. Application of silicon (Si) has been shown to be a promising solution to improve drought tolerance; however, the biochemical mechanisms and interactions involved are not fully understood, especially in legumes. This study was designed to evaluate the effects of Si on drought stress tolerance of lentil genotypes. Seven lentil genotypes with different drought tolerance levels (tolerant, moderately tolerant and sensitive) were subjected to moderate and severe drought stress at the onset of the reproductive stage. Results showed that different drought stress treatments significantly decreased the above ground biomass, water status and the concentration of chlorophyll pigments, whereas Si supplementation of drought stressed lentil genotypes significantly improved the same traits, irrespective of their drought tolerant levels. On the other hand, Si effect on osmoregulation leads to a decline in the membrane damage and osmolytes (proline and glycine betaine) concentration in drought-stressed lentil. Application of Si to drought-stressed lentil plants significantly maintained the nitro-oxidative homeostasis by balancing the concentrations of reactive oxygen/nitrogen species, superoxide anion, hydrogen peroxide and nitrous oxide, thereby reducing the oxidative damage caused due to drought stress. Furthermore, Si supplementation also stimulated the efficiency of the glutathione (GSH)-ascorbate (ASC) cycle by increasing the concentrations of GSH and ASC as well as the activities of antioxidant enzymes like ascorbate peroxidase, guaiacol peroxidase, catalase, superoxide dismutase, glutathione reductase, dehydro-ascorbate reductase and nitrate reductase for better protection of cell membranes from reactive oxygen species. Although Si showed the same regulatory mechanisms in all the studied genotypes to protect lentil plants from moderate and severe drought stress, the defensive role of Si against drought stress was more conspicuous in drought sensitive genotypes than in the tolerant ones. Thus, this study suggests the protective role of Si on drought-stressed lentil genotypes through the modulation of nitro-oxidative homeostasis and antioxidant defence responses.


Assuntos
Antioxidantes , Lens (Planta) , Catalase/metabolismo , Secas , Homeostase , Lens (Planta)/metabolismo , Estresse Oxidativo , Silício/farmacologia , Superóxido Dismutase/metabolismo
3.
J Sci Food Agric ; 101(4): 1454-1466, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32851662

RESUMO

BACKGROUND: Lentil is an important nutritionally rich pulse crop in the world. Despite having a prominent role in human health and nutrition, it is very unfortunate that global lentil production is adversely limited by drought stress, causing a huge decline in yield and productivity. Drought stress can also affect the nutritional profile of seeds. Silicon (Si) is an essential element for plants and a general component of the human diet found mainly in plant-based foods. This study investigated the effects of Si on nutritional and sensory properties of seeds obtained from lentil plants grown in an Si-supplied drought-stressed environment. RESULTS: Significant enhancements in the concentration of nutrients (protein, carbohydrate, dietary fibre, Si) and antioxidants (ascorbate, phenol, flavonoids, total antioxidants) were found in seeds. Significant reductions in antinutrients (trypsin inhibitor, phytic acid, tannin) were also recorded. A novel sensory analysis was implemented in this study to evaluate the unconscious and conscious responses of consumers. Biometrics were integrated with a traditional sensory questionnaire to gather consumers responses. Significant positive correlations (R = 0.6-1) were observed between sensory responses and nutritional properties of seeds. Seeds from Si-treated drought-stressed plants showed higher acceptability scores among consumers. CONCLUSION: The results demonstrated that Si supplementation can improve the nutritional and sensory properties of seeds. This study offers an innovative approach in sensory analysis coupled with biometrics to accurately assess a consumer's preference towards tested samples. In the future, the results of this study will help in making a predictive model for sensory traits and nutritional components in seeds using machine-learning modelling techniques. © 2020 Society of Chemical Industry.


Assuntos
Lens (Planta)/química , Lens (Planta)/efeitos dos fármacos , Silício/farmacologia , Antioxidantes/análise , Carboidratos/análise , Fibras na Dieta/análise , Secas , Humanos , Lens (Planta)/fisiologia , Valor Nutritivo , Sementes/química , Sementes/efeitos dos fármacos , Sementes/fisiologia , Estresse Fisiológico , Taninos/análise , Paladar
4.
Plant Physiol Biochem ; 130: 69-79, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29966934

RESUMO

Salt stress is one of most dramatic abiotic stresses, reduces crop yield significantly. Application of hormones proved effective salt stress ameliorating approach. 24-Epibrassinolide (EBL), an active by-product from brassinolide biosynthesis shows significant salt stress tolerance in plants. EBL application improves plant growth and development under salt stress by playing as signalling compound in different metabolic and physiological processes. This article compiles all identified ways by which EBL improves plant growth and enhances crop yield. Furthermore, EBL enhances photosynthetic rate, reduces ROS production and plays important role in ionic homeostasis. Furthermore EBL-induced salt stress tolerance suggest that complex transcriptional and translational reprogramming occurs in response to EBL and salt stress therefore transcriptional and translational changes in response to EBL application are also discussed in this article.


Assuntos
Brassinosteroides/metabolismo , Plantas Tolerantes a Sal/metabolismo , Esteroides Heterocíclicos/metabolismo , Estresse Fisiológico
5.
Plant Physiol Biochem ; 127: 11-24, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29544209

RESUMO

Lentil (Lens culinaris, Medik.) is an important legume crop, which often experience drought stress especially at the flowering and grain filling phenological stages. The availability of efficient and robust screening tools based on relevant non-destructive quantifiable traits would facilitate research on crop improvement for drought tolerance. The objective of this study was to evaluate the drought tolerance of 37 lentil genotypes using infrared thermal imaging (IRTI), drought tolerance parameters and multivariate data analysis. Potted plants were kept in a completely randomized design in a growth chamber with five replicates. Plants were subjected to three different drought treatments: 100, 50 and 20% of field capacity at the onset of reproductive period. The relative drought stress tolerance was determined based on a set of morpho-physiological parameters including non-destructive measures based on IRTI, such as: canopy temperature (Tc), canopy temperature depression (CTD) and crop water stress index (CWSI) during the growing period and destructive measures at harvest, such as: dry root-shoot ratio (RS ratio), relative water content (RWC) and harvest index (HI). The drought tolerance indices used were drought susceptibility index (DSI) and drought tolerance efficiency (DTE). Results showed that drought stress treatments significantly reduced the RWC, HI, CTD and DSI, whereas, the values of Tc, CWSI, RS ratio and DTE significantly increased for all the genotypes. The cluster analysis from morpho-physiological parameters clustered genotypes in three distinctive groups as per the level of drought stress tolerance. The genotypes with higher values of RS ratio, RWC, HI, DTE and CTD and lower values of DSI, Tc and CWSI were identified as drought-tolerant genotypes. Based on this preliminary screening, the genotypes Digger, Cumra, Indianhead, ILL 5588, ILL 6002 and ILL 5582 were identified as promising drought-tolerant genotypes. It can be concluded that the IRTI analysis is a high-throughput constructive screening tool along with RS ratio, RWC, HI and other drought tolerance indices to define the drought stress tolerance variability within lentil plants. These results provide a foundation for future research directed at identifying powerful drought assessment traits using rapid and non-destructive techniques, such as IRTI along with the yield traits, and understanding the biochemical and molecular mechanisms underlying lentil tolerance to drought stress.


Assuntos
Genótipo , Temperatura Alta , Raios Infravermelhos , Lens (Planta) , Imagem Óptica , Desidratação
6.
Plant Physiol Biochem ; 119: 250-264, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28917144

RESUMO

Silicon (Si) has been widely reported to have beneficial effect on mitigating drought stress in plants. However, the effect of Si on seed germination under drought conditions is still poorly understood. This research was carried out to ascertain the role of Si to abate polyethylene glycol-6000 mediated drought stress on seed germination and seedling growth of lentil. Results showed that drought stress significantly decreased the seed germination traits and increased the concentration of osmolytes (proline, glycine betaine and soluble sugars), reactive oxygen species (hydrogen peroxide and superoxide anion) and lipid peroxides in lentil seedlings. The activities of hydrolytic enzymes and antioxidant enzymes increased significantly under osmotic stress. The application of Si significantly enhanced the plants ability to withstand drought stress conditions through increased Si content, improved antioxidants, hydrolytic enzymes activity, decreased concentration of osmolytes and reactive oxygen species. Multivariate data analysis showed statistically significant correlations among the drought-tolerance traits, whereas cluster analysis categorised the genotypes into distinct groups based on their drought-tolerance levels and improvements in expression of traits due to Si application. Thus, these results showed that Si supplementation of lentil was effective in alleviating the detrimental effects of drought stress on seed germination and increased seedling vigour.


Assuntos
Antioxidantes/metabolismo , Produção Agrícola , Germinação/efeitos dos fármacos , Hidrolases/metabolismo , Lens (Planta)/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Sementes/crescimento & desenvolvimento , Silício/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Desidratação/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...